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In December 1999 CrossTalk [3],
David Cook provided a well-reasoned

historical analysis of programming lan-
guage development and considered the
role languages play in the software devel-
opment process. The article was valuable
because it showed that programming lan-
guage developments are not sufficient to
ensure success; however, it would be dan-
gerous to conclude from this that they are
not necessary for success. Cook rightly iden-
tifies other issues such as requirements
capture, specifications, and verification
and validation (V&V) that need to be
addressed.

Perhaps we need to look at program-
ming languages not just in terms of their
ability to code some particular design but
in the influence the language has on some
of these other vital aspects of the devel-
opment process. The key notion is that of
the benefit of a precise language or lan-
guage subset. If the term subset has set
anyone thinking “oh no, not another cod-
ing standard,” then read on, the topic is
much more interesting and useful than
that!

Language Issues 
Programming languages have evolved in
three main ways. First came improvements
in structure; then attempts at improving
compile-time error detection through
such things as strong typing; and, most sig-
nificantly, facilities to improve our ability
to express abstractions. All of these have
shaped the way we think about problem
solving.

However, programming languages
have not evolved in their precision of
expression. In fact, they may have actually
gotten worse since the meaning of a sam-
ple of machine code is exact and unequiv-
ocal, whereas the meaning of the con-
structs of typical modern high-order lan-
guages are substantially less certain. The
evolution of C into C++ certainly

improved its ability to express design
abstractions but, if anything, the pre-
dictability of the compiled code de-
creased. These ambiguities arise either
from deficiencies in the original language
definition or from implementation free-
doms given to the compiler writer for ease
of implementation or efficiency reasons.

None of this may look like a very seri-
ous problem. We can still do code walk-
throughs and reviews and, after all, we still
have to do dynamic testing that should
flush out any remaining ambiguities. In
fact the evidence is quite strong that it does
matter because it creates an environment
where we are encouraged to make little
attempt to reason about the software we
are producing at each stage of its develop-
ment. Since we typically do not have for-
mal mathematical specifications and we
use imprecise programming languages, the
first artifact we have with formal seman-
tics is object code (object code is formal in
the sense that the execution machine pro-
vides operational semantics for it). So our
first opportunity to explore the behavior
of the software in any rigorous fashion
occurs very late in the development cycle
with malign consequences.

Where this trend is most harmful is in
high-integrity systems where reliability is
the pre-eminent property required. The

most common form of high-integrity sys-
tem is the safety-critical system. Such sys-
tems are characterized by the proportion-
ally very high overall effort that goes into
showing that the system is fit for service:
the V&V effort. We are seeking to demon-
strate before there is any service experience that
a system will be fit for use.

Claimed failure rates of 10-9 per flying
hour are not uncommon in aviation: 109

hours is more than 114,000 years! Leaving
aside for now the question of whether we
can ever hope to demonstrate such levels
of integrity by dynamic testing alone  [4, 5,
6], what is certain is that any such attempt
will be expensive. For high-integrity sys-
tems where typically more than half – and
sometimes as much as 80 percent – of the
time is spent in the integration and valida-
tion phases, we are locked into a vicious
circle: We are spending most of our time
at the most expensive point in the life
cycle. Worse, it is the point at which any
delay will inevitably affect the overall pro-
gram schedule.

The consequences of these difficulties
are well recognized. It is often stated that
developing software to a standard such as
DO-178B1 [7] at level A raises the cost by
a factor of five over non-critical develop-
ments. Much of this extra cost comes
from meeting the specific test coverage
criterion of the standard.

Reliable Programming in
Standard Languages
If we want to avoid the vicious circle of
late error detection and costly repair we
must start to reason logically about our
software at an earlier stage in its develop-
ment. We can do this by using a program-
ming language whose source code has a
precise meaning; this makes it possible to
provide tool support in the form of static
analyzers2 that can be applied very early in
the coding process, before dynamic testing
begins.
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This kind of early analysis, at the engi-
neer’s terminal, is an amplification of the
static analysis (such as type checking) per-
formed by compilers. The aim is to pre-
vent errors ever making it to test. These
gains are only possible if the language
rules are precise and the semantics are well
defined.

Given the imprecision of program-
ming languages in general we have three
ways of gaining the properties we seek:
• Work with particular, compiler-defined

dialects of programming languages.
• Design new languages with the prop-

erties we require.
• Use subsets of mainstream languages

designed to have the required proper-
ties.
Using dialects is quite a respectable

approach but not without its drawbacks.
First, vendors may be reluctant to reveal
the dialect. Also, there is no guarantee that
the compiler’s behavior won’t change
from version to version and without your
knowledge. Finally, there is no guarantee
that the compiler will even be consistent
in its behavior.

Purpose-designed languages with for-
mally defined semantics are a fascinating
research topic but are unlikely ever to
achieve the kind of critical mass required
to make them suitable for widespread
industrial use. My favorite example is
Newspeak [8]. It is named after the lan-
guage in George Orwell’s novel 1984.
Newspeak is elegant, precise and has all
the required properties. It also has several
major flaws: you can neither buy a com-
piler for it, nor a textbook, nor get train-
ing, nor hire staff! This is the fundamental
drawback of the custom-language
approach.

That leaves using coherent subsets of
mainstream languages. Done properly this
can provide the best of both worlds: pre-
cise semantics together with access to
tools, training, and staff. However, typical-
ly these subsets are informally defined.
Some language features may be omitted.
There is no attempt to construct a logical-
ly coherent sublanguage that makes the
qualitative shift to having no ambiguous
or insecure behavior. For example,
MISRA-C is a C-language subset defined
by the United Kingdom (UK) automotive
industry. MISRA-C [9] prohibits some of
the more problematic constructs of C,
such as unrestricted pointer arithmetic,
which is frequently the cause of coding
problems [10]. However, MISRA-C is not,
and does not claim to be, a logically sound
sublanguage.

Other subsets such as SPARK3 [11,
12, 13] are more ambitious since they seek

to define a language whose source code
wholly defines the eventual compiled
behavior. The language is intended to be
completely free from ambiguity, compiler-
dependent behavior, and other barriers to
precise reasoning. Before going on to
describe SPARK in more detail it is worth
looking further at the practical advantages
of correctness-by-construction approach.

The Lockheed C130J
The Lockheed C130J or Hercules II
Airlifter was a major updating of one of
the world’s most long-lived and successful
aircraft. The work was done at Lockheed’s
own risk. Much of the planned aircraft
improvement was to come from the com-
pletely new avionics fit and the new soft-
ware that lay at its heart. The project is
particularly instructive because it has some
unusual properties that provide some
interesting comparisons:

• Software subsystems developed by a
variety of subcontractors using a vari-
ety of methods and languages.

• Civil certification to DO-178B.
• Military certification to UK Def-Stan

00-55 involving an extensive, retro-
spective independent V&V (IV&V)
activity.
For the main mission computer soft-

ware, Lockheed adopted a well-document-
ed correctness-by-construction approach
[14, 15, 16]. The approach was based on:
• Semi-formal specifications using

Consortium Requirements Engineering
(CoRE) [17] and Parnas tables [18].

• “Thin-slice” prototyping of high-risk
areas.

• Template-driven approach to the pro-
duction of similar and repetitive code
portions.

• Coding in SPARK with tool-supported
static analysis carried out as part of the
coding process and certainly prior to

formal certification testing; this com-
bination was sufficient to eliminate
large numbers of errors at the coding
stage – before any formal review or
testing began.
This logical approach brought

Lockheed significant dividends. Perhaps
most striking was in the reduced cost of
the formal testing required for DO-178B
Level A certification: “Very few errors
have been found in the software during
even the most rigorous levels of FAA
[Federal Aviation Administration] testing,
which is being successfully conducted for
less than a fifth of the normal cost in
industry.” At a later presentation [2]
Lockheed was even more precise on the
benefits claimed for their development
approach:
• Code quality improved by a factor of

10 over industry norms for DO 178B
Level A software.

• Productivity improved by a factor of
four over previous comparable pro-
grams.

• Development costs were half that typi-
cal for non safety-critical code.

• With re-use and process maturity,
there was a further productivity
improvement of four on the C27J air-
lifter program.
These claims are impressive but they

are justified by the results of the UK
Ministry of Defense’s own retrospective
IV&V program that was carried out by
Aerosystems International at Yeovil in the
UK. It should be remembered that the
code examined by Aerosystems had
already been cleared to DO-178B Level A
standards, which should indicate that it
was suitable for safety-critical flight pur-
poses. Key conclusions of this study fol-
low:
• Significant, potentially safety-critical

errors were found by static analysis in
code developed to DO-178B Level A.

• Properties of the SPARK code
(including proof of exception free-
dom) could readily be proved against
Lockheed’s semi-formal specification;
this proof was shown to be cheaper
than weaker forms of semantic analy-
sis performed on non-SPARK code.

• SPARK code was found to have only
10 percent of the residual errors of
full Ada; Ada was found to have only
10 percent of the residual errors of
code written in C. This is an interesting
counter to those who maintain that
choice of programming language does
not matter, and that critical code can
be written correctly in any language:
The claim may be true in principle but
clearly is not commonly achieved in
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practice.
• No statistically significant difference in

residual error rate could be found
between DO-178B Level A and Level
B code, which raises interesting ques-
tions on the efficacy of the MC/DC
test coverage criterion.
Lockheed succeeded because they had

a strong process with an emphasis on
requirements capture and accurate specifi-
cations; furthermore, they made their
process repeatable by using templates. All
these are wise things recommended by
David Cook [3] in his article.

SPARK’s role in this process was cru-
cial. Its precision helped expose any lack
of clarity in the specifications to be imple-
mented. The exact semantics of SPARK
require software writers to think carefully
and express themselves clearly; any lack of
precision is ruthlessly exposed by the rig-
orous analysis performed by its support
tool, the SPARK Examiner4.

One of the first effects of the adop-
tion of SPARK on the project was to
make the CoRE specification much more
of a central and “live” document than
before. Instead of “interpreting” unclear
requirements on their own, developers
were nagged by the Examiner into getting
the required behavior agreed upon and the
specification updated to match; everyone
gained from this.

The second SPARK contribution
came with the UK military certification
process. Here the fact that SPARK facili-
tates formal verification or “proof ” came
into play. As Lockheed put it: “The tech-
nology for generating and discharging
proof obligations, based on SPARK ... was
crucial in binding the code to the initial
requirements.”

The Lockheed process might be
termed “verification-driven development”
since it is a process that recognizes that
showing the system to be correct is usual-
ly harder than making it correct in the first
place. Therefore the process is optimized
to produce the evidence of correctness as
a by-product of the method of develop-
ment.

The SPARK Language
SPARK is an annotated subset of Ada
with security obtained by two complemen-
tary approaches. First, the more problem-
atic parts of Ada, e.g., unrestricted tasking,
are eliminated. Second, remaining ambigu-
ities are removed by providing additional
information in the form of annotations.
Annotations are special comments that
make clear the programmer’s intentions.
Since they are comments, the compiler
ignores them, but they are read and cross-

checked against the code by the SPARK
Examiner. Annotations also serve an
important purpose by providing stronger
descriptions of the abstractions used; this
means that it is possible to analyze a part
of the system without needing to access
all the package bodies. Again this facili-
tates early analysis.

SPARK is introduced here to illustrate
how a precise, unambiguous program-
ming language is constructed and the ben-
efits it brings. The goals set out for the
original authors, more than 10 years ago,
were as follows.

Logical Soundness
This covers the elimination of language
ambiguities as mentioned earlier. The
behavior of a SPARK program is wholly
defined by and predictable from its source
code.

Simplicity of Formal Language
Definition
In order to demonstrate SPARK’s logical
soundness, it was felt desirable to write a
formal definition of its static and dynam-
ic semantics. This challenging task was
completed in 1994, fortunately without
producing any nasty surprises.

Expressive Power
The aim here was to produce a language
that was rich and expressive enough for
real industrial use. You can of course pro-
duce a safe subset of any language if you
make it so small that it is impossible to
write real programs in it: If you cannot
write anything, you certainly cannot write
dangerous code! 

SPARK retains all the important Ada
features required for writing well-engi-
neered object-based code. It has packages,
private types, functions returning struc-
tured types, and all of Ada’s control struc-
tures. This leaves a clean, easy-to-learn
language that, while smaller than Ada, is
still rich and expressive.

Security
SPARK has no unenforceable language
rules. The static semantic rules of SPARK
are 100 percent machine-checkable using
efficient analysis algorithms. It is this fea-
ture that makes it feasible to consider stat-
ic analysis to be part of the design and
coding process rather than seeing it as a
retrospective V&V activity.

Verifiability
This is a consequence of the exact seman-
tics of SPARK. Since the source code has
a precise meaning, it is possible to reason
about in a rigorous mathematical manner.

The SPARK Examiner can be used to
facilitate proof that SPARK code con-
forms to some suitable specifications, or
that it has certain properties. A very
straightforward and useful facility is the
ability to construct a proof that the code
will be completely free from run-time
errors (such as the predefined exceptions).

Bounded Space and Time
Requirements
A very important property of many criti-
cal systems is that they should operate for
long periods; this means, for example, that
they should not suffer from such things as
memory leaks. SPARK programs are
inherently bounded in space – there is no
recursion or heap allocation for example –
and can be made bounded in time. The
end result is that the required machine
resources can be calculated statically.

Correspondence With Ada
This is how the “Newspeak” trap is avoid-
ed. All SPARK programs are legal Ada pro-
grams and can be compiled with any stan-
dard compiler. More usefully, the meaning
of a SPARK program cannot be affected
by the implementation freedoms that the
Ada standard allows the compiler writer.
For example, it does not matter whether
the compiler passes parameters by refer-
ence or by copying, or in which order it
evaluates expression; the compiled SPARK
code will have the same behavior. In effect,
to use the terminology of the Ada LRM, it
is not possible to write erroneous Ada pro-
grams in SPARK.

Verifiability of Compiled Code
Since we are taking advantage of the pre-
cision of the language to reason about
source code, we need to consider the
accuracy with which the compiler will gen-
erate object code. Clearly SPARK cannot
change the behavior of compilers but
there is some evidence that the simplifica-
tions of Ada provided by SPARK tend to
exercise the well-trodden paths of a com-
piler rather than its obscure back alleys.
The resulting machine code seems to be
easier to relate to the source than might
otherwise be the case.

Minimal Run-Time System
Requirements
This is an extremely important area.
Complex languages that provide facilities
for concurrency, exception handling, etc.,
require large run-time library (RTL) sup-
port. Since the RTL forms part of the
overall system, we need to demonstrate its
correctness just as we must the application
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code itself. As the RTL is likely to be pro-
prietary and opaque, this can be very diffi-
cult.

SPARK inherently requires very little
run-time support; for example, the SHO-
LIS [19] system developed by Praxis
Critical Systems made only one call to a
small routine in a fixed-point math
library. Many Ada compiler vendors sup-
ply small RTLs for certification purposes,
and SPARK is compatible with all of
these. The smallest of all is GNAT Pro
High-Integrity Edition from ACT
because this has no RTL at all. As a
demonstration, the SHOLIS code was
ported to this system [20].

As an aside, it is quite interesting to
compare the language subsets supported
by the compiler vendors with SPARK.
The former are all produced by removing
the complex and difficult-to-understand
parts of their run-time systems and seeing
how much of the language can still be
supported. Reasoning about the semantics
of the language itself and eliminating
problematic areas makes the latter. Both
approaches produce almost identical sub-
sets.

Cost Saving Example
So how did SPARK help Lockheed reduce
its formal FAA test costs by 80 percent?
The savings arose from avoiding testing
repetition by eliminating most errors
before testing even began. During the
early stages of the project, before SPARK
was fully adopted, an illustrative incident
occurred. This is described in [15], which
states: “In one case, a code error in a stan-
dard Ada module had resisted diagnosis
for one week using normal testing meth-
ods. The module was converted to
SPARK ... and the error was then identi-
fied in 20 minutes through SPARK analy-
sis. Efficiencies of this type were obtained
repeatedly.”

Later in the project, when SPARK was
fully established, the savings were even
greater because errors of this kind never
got to the test stage at all. They were elim-
inated as part of the coding process.

The case in question took the form of
a Boolean function with a significant num-
ber of possible execution paths. On one
of these paths there was a data flow error
resulting in a random value being returned
for the function. Finding this by test was
extremely difficult because it was not
enough simply to traverse the faulty
branch. It was also necessary to be lucky
with the random value returned. Since
most random bytes of memory are non-
zero, and non-zero values are typically
regarded as being Boolean “true” by the

compiler, the function usually returned
true when the incorrect branch was exe-
cuted; unfortunately, this was the right
answer for this test condition! So the func-
tion nearly always behaved correctly but,
apparently inexplicably, returned the
wrong answer under seemingly random
conditions. Simplified, the example was as
follows:
• Specification Table. Table 1 repre-

sents the required behavior of an air-
crew alert system. The mon column
shows the input value of a “moni-
tored” variable, in this case showing
the severity of an alert message. The
con column shows the required output
of a “controlled” variable, in this case
a Boolean value saying whether an
alarm bell should sound in the cockpit.

• Flawed Implementation. A flawed
implementation of the function might
be:
type Alert is (Warning, Caution,
Advisory);
function RingBell (Event : Alert) 
return Boolean
is

Result : Boolean;
begin

if Event = Warning then
Result := True;

elsif Event = Advisory then
Result := False;

end if;
return Result;

end RingBell
• SPARK Examination. The analysis

performed by the SPARK Examiner
includes a mathematically rigorous
data and information flow analysis [21]
that uncovers all uses of undefined
data values thus:
13 function RingBell (Event : Alert)

return Boolean
14 is
15 Result : Boolean;
16 begin
17 if Event = Warning then
18 Result := True;
19 elsif Event = Advisory then
20 Result := False;
21 end if;
22 return Result;

^1
??? ( 1) Warning : Expression contains

reference(s) to variable Result,
which may be undefined.

23 end RingBell;
??? (2) Warning : The undefined initial

value of Result may be used in the
derivation of the function value.

This clear indication is obtained at the
engineer’s terminal before compilation,
before test, before the code is even
checked back into configuration manage-

ment. The error never enters the system
so it never has to be found and eliminated.

Conclusion
Most high-integrity and safety-critical
developments make use of language sub-
sets. Unfortunately, these subsets are usu-
ally informally designed and consist, in
practice, of simply leaving out parts of the
language thought to be likely to cause
problems. Although this shortens the
length of rope with which the program-
mers may hang themselves, it does not
bring about any qualitative shift in what is
possible.

The use of coherent subsets free from
ambiguities and insecurities does bring
such a shift. Crucially it allows analysis to
be performed on source code before the
expensive test phase is entered. This analy-
sis is both more effective and cheaper than
manual methods such as inspections.
Inspections should still take place but can
focus on more profitable things like “does
this code meet its specification” rather
than “is there a possible data-flow error.”

Eliminating all these “noise” errors at
the engineer’s terminal greatly improves
the efficiency of the test process because
the testing can focus on showing that
requirements have been met rather than
becoming a “bug hunt.” In my 10-plus
years of using SPARK, I have never need-
ed to use a debugger. I have become so
used to things working the first time that
my debugging skills have almost complete-
ly atrophied. The only price I pay for this
is the SPARK Examiner pointing at the
source code on my terminal and displaying
messages telling me I have been stupid
again; I find I am grateful for those mes-
sages!

The SPARK language definition [11,
12] is both free and freely available (see
<www.sparkada.com> or e-mail sparkin
fo@praxis-cs.co.uk). Alternatively, John
Barnes’ textbook [13] provides an informal
and approachable description of the lan-
guage together with demonstration
tools.◆
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Notes
1. DO-178B (ED-12B in Europe) is the

prevalent standard against which civil
avionics software is certified. Level A
software is defined as software whose
failure would prevent continued safe
flight or landing.

2. Static analyzers are tools that deter-
mine various properties of a program
by inspecting its source code; unlike
dynamic testing the program is not
compiled and run.

3. The SPARK programming language is
not sponsored by or affiliated with
SPARC International Inc. and is not
based on SPARC™ architecture.

4. SPARK is a programming language;
the SPARK Examiner is the static
analysis tool used to analyze SPARK
programs.
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